(5x^2-20)-(4x-25)=180

Simple and best practice solution for (5x^2-20)-(4x-25)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x^2-20)-(4x-25)=180 equation:



(5x^2-20)-(4x-25)=180
We move all terms to the left:
(5x^2-20)-(4x-25)-(180)=0
We get rid of parentheses
5x^2-4x-20+25-180=0
We add all the numbers together, and all the variables
5x^2-4x-175=0
a = 5; b = -4; c = -175;
Δ = b2-4ac
Δ = -42-4·5·(-175)
Δ = 3516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3516}=\sqrt{4*879}=\sqrt{4}*\sqrt{879}=2\sqrt{879}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{879}}{2*5}=\frac{4-2\sqrt{879}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{879}}{2*5}=\frac{4+2\sqrt{879}}{10} $

See similar equations:

| 6x+13=9x+23 | | 9e=3e=12 | | (5x^2-20)=(4x-25)=180 | | 92=-6(-4-3y) | | 12=n9+1 | | a–2=3+((6a)/3) | | 11(13x+3)+6=-1248 | | 8x+(x-4)^2=25 | | 8^x+2=3(4^2x) | | 3(x-2)+2(x-5)=9x/2 | | 15(-5y+4)=-3(13y+4) | | –2(x+3)=4x–3 | | 18-(x-6)=9x-8 | | 8x^2-25x-200=0 | | -3(-2x-31)-7x=86 | | 6t−1=7 | | 2x–1=x+11 | | 5x²+21x+4=0 | | 5(m-3)=4(m-6 | | -11x+2x2-21=0 | | 2c–5=c+4 | | (2x-4)/6=x/4 | | (x-4)^2=25-8x | | -2x+6(-2x-33)=-338 | | 4x-2+40=20x+5 | | -2(-x-30)-4x=48 | | 15x+5+22x+4x=120 | | 3e=4e=4 | | -30=6x+2(-4x-3) | | 1000000=5000(1+x)34 | | -5d-12=3 | | x^-14X+49=18 |

Equations solver categories